Probing of Thermal Transport in 50-nm Thick PbTe Nanocrystal Film by Time-Domain Thermoreflectance
Piotrowski, M.; Franco, M.; Sousa, V.; Rodrigues, J.; Deepak, F. L.; Kakefuda, Y; Kawamoto, N.; Baba, T.; Owens-Baird, B.; Alpuim, P.; Kovnir, K.; Mori, T.; Kolen'ko, Y. V.
J. Phys. Chem. C, 2018, DOI: 10.1021/acs.jpcc.8b04104

Adsorption of Pharmaceutical Pollutants from Water Using Covalent Organic Frameworks
Mellah, A.; Fernandes, S.P.S.; Rodríguez, R.; Otero, J.; Paz, J.; Cruces, J.; Medina, D.D.; Djamila, H.; Espina, B.; Salonen, L. M.
Chem. Eur. J., 2018, 24, 10601 –10605.
Cover Picture

Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release
Guldris, N.; Gallo, J.; García-Hevia, L.; Rivas, J.; Bañobre-López, M.; Salonen, L. M.
Chem. Eur. J., 2018, 24, 8624–8631

Chromonic self-assemblies in a series of dialkyl-thiacarbocyanine dyes and generalization of a facile route for the synthesis of fluorescent nanostructured silica fibers
Magana, J.R.; Solans, C.; Salonen, L. M.; Carbó-Argibay, E.; Gallo, J.; Tiddy, G. J. T.; Rodríguez-Abreu, C.
J. Taiwan Inst. Chem. Eng., 2018, DOI: 10.1016/j.jtice.2018.03.027.

Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness.
Praveen Kumar Balguri; Harris Samuel, D.G.; Guruvishnu, T.; Aditya, D.B.; Mahadevan, S.M.; Udayabhaskararao Thumu
Mater. Res. Express, 2018, 5, 014013.

Al-induced In situ Formation of Highly Active Nanostructured Water-oxidation Electrocatalyst Based on Ni-phosphide.
Xu, J.; Sousa, J.P.S.; Mordvinova, N.; Costa, J.D.; Petrovykh, D.Y.; Kovnir, K.; Lebedev, O.I.; Kolen'ko Yu.V.
ACS Catal., 2018, 8, 2595–2600.

Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia.
Vilas-Boas, V.; Espina, B.; Kolen'ko, Yu.V.; Banobre-Lopez, M.; Duarte, J.A.; Martins, V.C.; Petrovykh, D.Y.; Freitas, P.P.; Carvalho, F.D.
Biointerphases, 2018, 13, 011005.

Structure-activity Relationships for Pt-free Metal Phosphide Hydrogen Evolution Electrocatalysts.
Owens-Baird, B.; Kolen’ko, Yu.V.; Kovnir, K.
Chem. Eur. J., 2018, 24 (29), 7298-7311. Invited review.

Optimized Magnetodielectric Coupling on High-Temperature Polymer-Based Nanocomposites.
Maceiras, A.; Marinho, T.; Vilas, J.L.; Carbo-Argibay E.; Kolen'ko, Yu.V.; Lanceros-Méndez, S.; Martins, P.
J. Phys. Chem. C, 2017, 122 (3), 1821–1827.

Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples.
Garrido-Maestu, A.; Azinheiro, S.; Carvalho, J.; Abalde-Cela, S.; Carbó-Argibay, E.; Diéguez, L.; Piotrowski M.; Kolen’ko, Yu.V.; Prado, M.
Front Microbiol., 2017, 8, 2159, 1-8.

Adsorption of Marine Phycotoxin Okadaic Acid on a Covalent Organic Framework.
Salonen, L.M.; Pinela, S.R.; Fernandes, S.P.S.; Louçano, J.; Carbó-Argibay, E.; Sarría, M.P.; Rodríguez-Abreu, C.; Peixoto, J.; Espina, B.
J. Chromatogr. A, 2017, 1525, 17-22.

Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach.
Lecloux, A.J.; Atluri, R.; Kolen'ko, Yu.V.; Deepak, F.L.
Nanoscale, 2017, 9, 14952–14966.

Interface Engineering in Nanostructured Nickel Phosphide Catalyst for Efficient and Stable Water Oxidation.
Xu, J.; Wei, X.; Costa, J.D. ; Lado, J.L.; Owens-Baird, B.; Gonçalves, L.P.L.; Fernandes, S.P.S.; Heggen, M.; Petrovykh, D.; Dunin-Borkowski, R.E.; Kovnir, K.; Kolen'ko, Yu.V.
ACS Catal., 2017, 7, 5450-5455.

Exploiting the Anti-Aggregation of Gold Nanostars for Rapid Detection of Hand, Foot and Mouth Disease Causing Enterovirus 71 using Surface-Enhanced Raman Spectroscopy.
Reyes, M.; Piotrowski, M.; Ang, S.K.; Chan, J.; He, S.; Chu, J.J.H.; Kah, J.C.Y.
Anal. Chem., 2017, 89 (10), 5373–5381.

Emerging Nanostructured Electrode Materials for Water Electrolysis and Rechargeable Beyond Li-ion Batteries.
Pomerantseva, E.; Resini, C.; Kovnir, K.; Kolen’ko, Yu.V.
Adv. Phys. X, 2017, 2, 211–253. Invited review.

Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in vivo Tracking.
Guldris, N.; Argibay, B.; Gallo, J.; Iglesias-Rey, R.; Carbó-Argibay, E.; Kolen'ko, Yu.V.; Campos, F.; Sobrino, T.; Salonen, L.M.; Banobre-López, M.; Castillo, J.; Rivas J.
Bioconjugate Chem., 2017, 28, 362–370.
A Supramolecular Strategy Based on Molecular Dipole Moments for High-Quality Covalent Organic Frameworks.
Salonen, L.M.; Medina, D.D.; Carbó-Argibay, E.; Goesten, M.G.; Mafra, L.; Guldris, N.; Rotter, J.M.; Stroppa, D.G.; Rodriguez-Abreu, C.
Chem. Commun., 2016, 52, 7986-7989.

From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications.
Magana, J.R.; Kolen’ko, Yu.V.; Deepak, F.L.; Solans, C.; Shrestha, R.G.; Hill, J.P.; Ariga, K.; Shrestha, L.K.; Rodriguez-Abreu, C.
ACS Appl. Mater. Interfaces, 2016, 8, 31231–31238.

Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper.
Costa, J.D.; Lado, J.L.; Carbó-Argibay, E.; Paz, E.; Gallo, J.; Cerqueira, M.F.; Rodriguez-Abreu, C.; Kovnir, K.; Kolen’ko, Yu.V.
J. Phys. Chem. C, 2016, 120, 16537–16544.

Efficient Artificial Mineralization Route to Decontaminate Arsenic(III) Polluted Water - the Tooeleite Way.
Malakar, A.; Das, B.; Islam, S.; Meneghini, C.; De Giudici, G.; Merlini, M.; Kolen’ko, Yu.V.; Iadecola, A.; Aquilanti, G.; Acharya, S.; Ray S.
Sci. Rep., 2016, 6, 26031.

Influence of the Separation Procedure on the Properties of Magnetic Nanoparticles: Gaining In Vitro Stability and T1–T2 Magnetic Resonance Imaging Performance.
Guldris, N.; Argibay, B.; Kolen’ko, Yu.V.; Carbó-Argibay, E.; Sobrino, T.; Campos, F.; Salonen, L.M.; Banobre-López, M.; Castillo, J.; Rivas J.
J. Colloid Interface Sci., 2016, 472, 229–236.

Magnetic Nanocolloids. In Nanocolloids: A Meeting Point for Scientists and Technologists.
Rivas, J.; Kolen’ko, Yu.V.; Banobre-López M.
Eds. Sanchez Dominguez, M.; Rodriguez Abreu, C. Elsevier, 2016, 75-129.

Relevant Parameters for Magnetic Hyperthermia in Biological Applications: Agglomeration, Concentration, Viscosity.
Pineiro, Y.; Vargas-Osorio, Z.; Banobre-López, M.; Kolen’ko, Yu.V.; López-Quintela, M.A.; Rivas J.
IEEE Trans. Magn., 2016, 52, 2300704.